Preliminary

TOSHIBA Photocoupler GaAlAs IRED & Photo-IC

TLP716

Digital Isolation for A/D,D/A Conversion.

High Speed Line Receiver.

Microprocessor System Interfaces.

Plasma display panel.

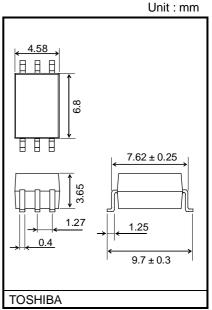
The TOSHIBA TLP716 consists of a GaAlAs light emitting diode and a high speed photodetector. This unit is 6-lead SDIP. TLP716 is 50% smaller than 8PIN DIP and has suited the safety standard reinforced insulation class. So mounting area in safety standard required equipment can be reduced.

Inverter Logic (totempole output)

Package Type : SDIP6

Guaranteed Performance Over Temperature : -40~100°C

Power Supply Voltage: 4.5~5.5V

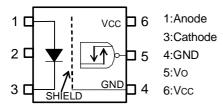

Input Thresholds Current : IFHL=6.5mA(max.)
 Propagation delay Time (tpHL/ tpLH) : 75ns(max.)

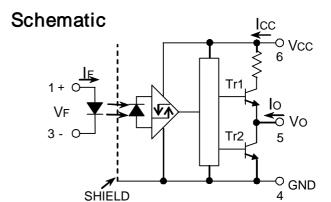
• Switching speed : 20MBd(typ.) (NRZ)

Common mode transient immunity: 10kV/us

Isolation Voltage : 5000VrmsConstruction Mechanical Rating

	7.62 mm pich standard type	10.16 mm pich TLPXXXF type
Creepage Distance Clearance	7.0 mm (min) 7.0 mm (min)	8.0 mm (min) 8.0 mm (min)
Insulation Thickness	0.4 mm (min)	0.4 mm (min)




Weight: 0.26g

Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Н

Pin Configuration (top view)

A 0.1uF bypass capacitor must be connected between pin6 and 4. (See Note3)

Maximum Ratings (Ta=25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	lF	20	mA
	Peak Transient Forward Current (Note1)	IFPT		Α
	Reverse Voltage	VR	5	V
~	σ Output Current		10	mA
55	Output Voltage		6	V
I E	Supply Voltage		6	V
DE	Output power dissipation		40	mW
Oper	ating Temperature Range	Topr	-40~100	°C
Stora	nge Temperature Range	Tstg	-55~125	°C
Lead	Solder Temperature(10s)	Tsol	260	°C
	tion Voltage .C,1min.,R.H.≤60%,Ta=25°C) (Note2)	BVs	5000	Vrms

Note1 : Pulse width PW≤10us,300pps.

Note2 : Device Considered a two terminal device : pins 1,2 and 3 shorted together and pins 4,5 and 6 shorted together.

Note3 : A ceramic capacitor(0.1 μ F) should be connected from pin 6 to pin 4 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property.

The total lead length between capacitor and coupler should not exceed 1 cm.

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current , ON	IF(ON)	8	12	18	mA
Input Voltage , OFF	VF(OFF)	0		0.8	V
Supply Voltage	VCC	4.5	5	5.5	V
Operating Temperature	Topr	-40	_	100	°C

The correlation between input current and switching speed and drive circuit (reference information).

Input Current (IF)	TEST CIRCUIT	Typical Switching Speed
12mA	1 (Page 4)	18 – 20 MBd
8mA	1 (Page 4)	16 – 18 MBd
8mA	2 (Page 4,With Speed up capacitor)	20 – 22 MBd

Electrical Characteristics

(Unless otherwise specified, Ta=-40 to 100°C, Vcc=4.5~5.5V)

<u> </u>		· · · · · · · · · · · · · · · · · · ·				
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Forward Voltage	VF	IF=10mA ,Ta=25°C		1.65	1.8	V
Temperature Coefficient of Forward Voltage	ΔVF/ΔΤα	IF=10mA	ı	-2.0	_	mV/°C
Input Reverse Current	IR	VR=5V,Ta=25°C	_	_	10	μΑ
Input Capacitance	Ст	V=0V,f=1MHz,Ta=25°C	_		_	pF
Logic Low Output Voltage	VOL	IOL=1.6mA, IF=12mA, VCC=5V	1	-	0.4	V
Logic High Output Voltage	VOH	IOH=-0.02mA , VF=1.05V,VCC=5V	4.0	_	_	V
Logic Low Supply Current	ICCL	IF=12mA	1	1	5.0	mA
Logic High Supply Current	ICCH	VF=0V (Note4)	1	1	5.0	mA
Input Current Logic Low Output	IFHL	IO=1.6mA,VO<0.4V		_	6.5	mA
Input Voltage Logic High Output	VFLH	IO=-0.02mA,VO>4.0V	0.8	ı	_	V

^{*}All typical values are at Ta=25°C,VCC=5V , IF(ON)=12mA unless otherwise specified

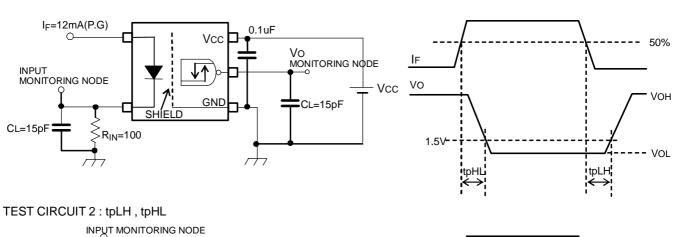
Note4: The Photodetector needs VCC of 4.5V or more for the stability operation.

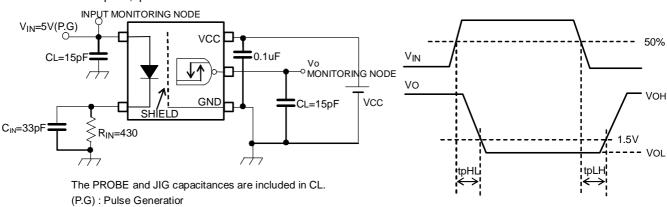
In the VCC domain not more than this, since ICCH may increase in part, please use it after checking operation at the time of power supply current, power supply ON, and OFF.

Isolation Characteristics (Ta = 25°C)

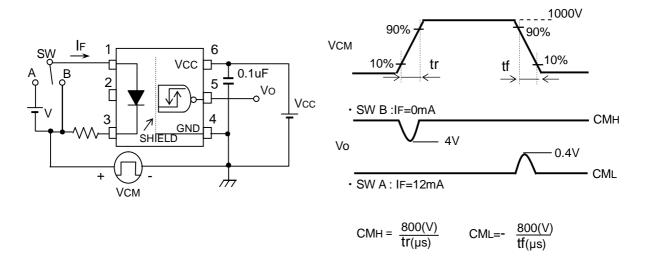
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance input to output	Cs	VS = 0V, $f = 1MHz$ (Note 2)	_	0.8	-	pF
Isolation resistance	R _S	R.H. ≤ 60%,V _S = 500V (Note 2)	1×10 ¹²	10 ¹⁴	1	Ω
		AC,1 minute	5000	_		V _{rms}
Isolation voltage	BVS	AC,1 second,in oil	_	10000	-	Vdc
		DC,1 minute,in oil	_	10000		vuc

Switching Characteristics


(Unless otherwise specified, Ta= -40 to 100 , VCC=4.5~5.5V)


CHARACTERISTIC	SYMBOL	TEST -CIRCUIT	CONI	DITION	MIN.	TYP.	MAX.	UNIT
propagation Delay Time to Logic High output	tpLH	1	IF=0→12mA	RIN=100Ω CL=15pF		ı	75	ns
propagation Delay Time to Logic Low output	tpHL	1	IF=12→0mA	(Note 5)		l	75	ns
propagation Delay Time to Logic High output	tpLH	2	V _{IN} =5→0V (IF=8→0mA)	R_{IN} =430 Ω C_{IN} =33pF	_	_	65	ns
propagation Delay Time to Logic Low output	tpHL	2	$V_{IN}=0\rightarrow 5V$ (IF=0 $\rightarrow 8$ mA)	CL=15pF (Note 5)	_	1	65	ns
Switching Time Dispersion between ON and OFF	tpHL- tpLH		R _{IN} =100Ω, CL	=15pF (Note 5)	_	l	45	ns
Output Rise Time	tr	1	IF=12→0mA	R _{IN} =100Ω CL=15pF		15	_	ns
Output Fall Time	tf		IF=0→12mA	(Note 5)	_	15	_	ns
Common Mode transient Immunity at High Level Output	СМН	3	VCM=1000Vp- VO(Min)=4V,Ta		-10000	_	_	V/us
Common Mode transient Immunity at Low Level Output	CML	3	VCM=1000Vp- VO(Max)=0.4V		10000	_	_	V/us

^{*}All typical values are at Ta=25°C


Note 5: Capacity of a probe and a wire.

TEST CIRCUIT 1: tpLH, tpHL

TEST CIRCUIT 3: CMH, CML

 CM_L (CM_H) is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

5

RESTRICTIONS ON PRODUCT USE

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.